A Class of Extreme X-harmonic Functions
نویسنده
چکیده
Salisbury and Verzani introduced a class of martingales for the Brownian superprocess related to conditionings of the process to exit the boundary of a bounded domain in Rd in a particular way. The corresponding class of functions, denoted Hg,h1,...,hN , was generalized by Dynkin to more general superprocesses and shown to be X-harmonic. Salisbury and Verzani conjectured that a certain choice of g and h’s would yield minimal functions in the Brownian case. This paper shows that this conjecture is true.
منابع مشابه
A new subclass of harmonic mappings with positive coefficients
Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk $U$ can be written as form $f =h+bar{g}$, where $h$ and $g$ are analytic in $U$. In this paper, we introduce the class $S_H^1(beta)$, where $1<betaleq 2$, and consisting of harmonic univalent function $f = h+bar{g}$, where $h$ and $g$ are in the form $h(z) = z+sumlimits_{n=2}^inf...
متن کاملOn Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions
Abstract. In this paper we define and verify a subclass of harmonic univalent functions involving the argument of complex-value functions of the form f = h + ¯g and investigate some properties of this subclass e.g. necessary and sufficient coefficient bounds, extreme points, distortion bounds and Hadamard product.Abstract. In this paper we define and verify a subclass of harmonic univalent func...
متن کاملOn a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator
In this paper we obtain coefficient characterization, extreme points and distortion bounds for the classes of harmonic $p-$valent functions defined by certain modified operator. Some of our results improve and generalize previously known results.
متن کاملA certain convolution approach for subclasses of univalent harmonic functions
In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.
متن کاملThe starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings
The main aim of this paper is to introduce three classes $H^0_{p,q}$, $H^1_{p,q}$ and $TH^*_p$ of $p$-harmonic mappings and discuss the properties of mappings in these classes. First, we discuss the starlikeness and convexity of mappings in $H^0_{p,q}$ and $H^1_{p,q}$. Then establish the covering theorem for mappings in $H^1_{p,q}$. Finally, we determine the extreme points of the class $TH^*_{p}$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008